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Supergroups have no extra topology 

R F Picken 
Institut fur Theorie der Elementarteilchen, Freie Universitat Berlin, FB20, WE4, 
Arnimallee 14, D-1000 Berlin 33, West Germany 

Received 6 April 1983 

Abstract. The global topology of supergroups is studied and it is found that they are 
equivalent as far as homotopy is concerned to the product of the underlying ordinary Lie 
groups. 

1. Introduction 

Supergroups have for a long time been familiar objects in supergravity theory (see 
van Niewenhuizen 1981 for a general review). However, most authors have considered 
only their local, linear, superalgebraic properties. In view of the importance of global, 
in particular homotopic, properties of Lie groups in gauge theories (for instance the 
importance of the relation n3(SU(2)) = Z for instanton physics), an investigation of 
the global nature of supergroups is a worthwhile undertaking. Our result is that 
supergroups exhibit no new topological features beyond the homotopy groups of the 
underlying Lie groups. 

Our material is organised as follows. In 9: 2 we introduce Grassman algebras. In 
Q 3 we define supermatrices and supergroups. In 9: 4 as an example we consider the 
topology of OSp(112; R). In $ 5  we prove our general result concerning supergroups. 
Section 6 contains comments and conclusions. 

2. Grassman algebras 

We wish to extend the ordinary real number system to a system of commuting and 
anticommuting numbers. This is best described in terms of the Grassman or exterior 
algebra AE of a real n-dimensional vector space E. Let e,, i = 1, . . . , n be a basis of 
E ;  then AE is spanned by the set of 2" basis vectors (1, e,, e, ~ e , ,  e, ~ e ,  ~ e ~ , .  . . , 
e l  A e2 A . , . A e,) where i, j ,  k etc run from 1 to n such that i < j  < k <. . . etc and A 

denotes the totally antisymmetric wedge product. As well as the vector space structure 
on AE the A product of elements of AE is defined by linearity from the A product 
of basis vectors. An example occurring in mathematical physics is the exterior algebra 
of forms at a point x of the n-dimensional manifold M, A P M x  spanned by (1, dx', 
dx' A dx', . . . , dx A .  . . A dx " )  with the usual wedge product of forms. 

We denote the Grassman algebra AR" by B,. Consider the elements of B, spanned 
by basis vectors consisting of (the wedge product of) precisely d basis vectors of R". 
This subspace is denoted B,,d and elements of B,,d are said to have degree d. If d > n 
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we define Bn,d = 0. B, also naturally decomposes into an even and an odd part denoted 
BSI and B!, respectively spanned by basis vectors of even resp odd degree. The A 

product respects both the Z grading of degree and the Z2 grading of evenness/oddness 
in the sense that 

B ;  A B', ~ z + i ' m o d  2 Bn,dl A Bn,dz CBn,dl+d2' 

Note that elements of B f  commute among themselves and with elements of BA, 
whereas elements of BA anticommute among themselves. 

All we have said can straightforwardly be generalised to complex Grassman 
algebras of complex vector spaces. 

3. Supermatrices and supergroups 

Consider the vector space consisting of column vectors 

with a,  E BO, Vi, 0, E B!, V j .  T 
( U I , .  . . , G I ,  81,. . . , e , )  

Linear transformations on this space are described by supermatrices (: g) where the 
entries of A ( m  x m )  and D ( p  x p )  are in B: and the entries of B ( m  x p )  and C 
( p  X m )  are in  B!,. In order to have the identity 

we must define 

because of the anticommutativity of the elements of B and Oj, which are interchanged 
in the transposition. Note that we have omitted to write the A product explicitly. 

Consider now a non-degenerate bilinear form on this vector space described by 
the real ( m  + p )  x (m + p )  matrix 

with P m x m symmetric and Q p x p antisymmetric. The linear transformations pre- 
serving this form are supermatrices ($ g) satisfying 

AT c y  " ( A  ")=(o '  0) 
( -BT DT 0 Q C D 

and such matrices form a (generally continuous) group called a super (Lie) group. By 
considering elements infinitesimally close to the identity 

we obtain the super (Lie) algebra associated with this supergroup, i.e. Gothic matrices 
satisfying 
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Most work in this area has concerned the description and classification of these 
superalgebras. Our interest concerns the topology of the set of matrices (; i) 
satisfying (l),  being the topology inherited as a subspace of the total parameter space 
R d ,  d = 2"-'(m +p)'. 

4. An example: the topology of OSp(112; R) 

If 

P =diag(l ,  . . . , 1, - 1 , .  . . , - 1) ( r  times 1, s times - 1) 

and 

then the supergroup preserving J is known as OSp(r, s /2 t ;  R) or OSp(rl2t; R) if s = 0. 
The supergroup OSp( 112; R) consists of matrices satisfying 

U S  0 0  

leading to the quadratic conditions 

Note that we have denoted elements of B f  resp B: with Roman resp Greek letters. 
We choose as our Grassman algebra B2 with basis (1, e , e , e A e = e  e } and 

display the components of even and odd elements in the following manner: 
1 2 1 2 - 1 2  

P = P l e ' + P z e 2 .  (3) 
1 2  a = a o + u 1 2 e  e , 

The equations (2) now split according to degree: 

2aoa12 - 2(K182 - K 2 8 1 )  = 0, 
(6) 

The inhomogeneous equations (4) describe the parameter spaces of O(1) and 
Sp(2; W) respectively. O(1)  consists of two points a, = i l  and Sp(2; R) is given, under 
a change of basis 

= 0. 
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which has topology S' x R2 as y i +  y:> 1 (and hence has a non-trivial fundamental 

Choosing a particular solution of (4), the remaining homogeneous equations ( 5 )  
and (6) yield nothing of topological interest. Equations ( 5 )  just describe hyperplanes 
in the remaining parameter space R13 and it is fairly easy to convince oneself that the 
hyperboloidal hypersurfaces (6) contain nothing of homotopic interest. For instance, 
choosing a. = 1, we have, under a similar change of basis to (7),  the hypersurface 

group TI). 

2 2  2 2  
~ 2 + ~ 3 = ~ 2 1 2 + 2 1 + z 4  

which is topologically trivial as a 1 2  is independently variable and in particular can 
take the value zero. 

5. The topological triviality of supergroups 

We will call a supergroup preserving the form J topologically trivial if it is homotopi- 
cally equivalent to G x H,  where G and H are ordinary Lie groups preserving P and 
Q respectively. ('Homotopically equivalent' means that the supergroup and G x H 
have the same homotopy groups ri (i = 0, 1, . . .).) In 9: 4 our reasoning amounted to 
the statement that OSp(112; R) is topologically trivial. We now prove the following 
general result. 

Theorem 1 .  All supergroups (of the type described in 9: 3) are topologically trivial. 

Proof. Let G, be a supergroup. We will prove the homotopic equivalence of G, and 
G x H  by showing that G x H  is a strong deformation retract of G,. ( A  C X  is a 
strong deformation retract of X if there exists a continuous map f :  X + A  such that: 

(1) f restricted to A is the identity map on A ;  
(2) there exists a continuous one-parameter family of maps f t :  X + A ,  t E [0, 11 

such that f o ( x ) = x ,  fl(x) = f ( x )  and f t ( a ) = f o ( a ) ,  V t E [ O ,  11, V u  E A .  We say that f 
is homotopic to id, relative to A .  

As an example the circle x 2 + y 2  = 1, z = 0 is a strong deformation retract of the 
cylinder x 2 +  y 2  = 1, - 1 s z S 1. In this case f is the projection map onto the (x, y )  
plane and the continuous family of maps fi progressively shrinks the height of the 
cylinder to zero.) G, is an intersection of quadrics in the total parameter space R d  
where d is given by ( m  +p)'  2"-' if we choose the Grassman algebra B,. From (l), 
G, is given by solutions of 

ATPA -+ CTQC ATPB + CTQD 
J-[ATPB+CTQD]T -BTPB+DTQD)=(OP 

where we used the properties PT = P, QT = - Q. 
Now, given a solution, we obtain a new solution by scaling each real parameter 

with a factor A d  (d E (0, 1, . . . , n } )  where d is the degree of the Grassman element 
parametrised. For instance in (3) we replace a and p by 

@ A  = @ l e 1  +A/32e2. 
2 1 2  

U A = L Z O + A  u12e e , 

This is indeed a new solution as the inhomogeneous equations of degree zero 

A,'PA~ = P, D,'QDo = Q, (8) 
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are unaffected by the scaling, whilst the homogeneous equations corresponding to 
degree d > 0 are simply multiplied by a factor A d  using the underlying Z grading of 
B,, discussed in $2.  

If we denote tl,is mapping of G ,  to itself by g,, then it is easily seen that the set 
of solutions of (8) i.e. G X H  is a strong deformation retract of G ,  using the continuous 
one-parameter family of maps g l - t ,  t E [O, 11. 

6. Comments and conclusion 

The extension of the previous result to complex Grassman algebras is straightforward. 
However, it is not clear to the author what the relation is between these supergroups 
and the supergroups known as SU(r, s i t ;  C) which have unit superdeterminant (see 
the next comment) and supposedly preserve the sesquilinear form 

fTPz + gTQcp = z &Pz + cp 'Q~J  

where z ,  ( r  = 1, . . . m = r + s),  cp, ( j  = 1, . . . t )  are even resp odd elements of a complex 
Grassman algebra, P is diag(1, . . . , 1, - 1, , , , , - 1) ( r  times 1, s times - 1) and Q is 
diag(1,. . . , 1) ( t  times 1). The quadratic matrix relation satisfied by an element of 
the supergroup is 

)=K 3 A-PB + C'QD 
( ( - A  'PB + c-00 j -B +m + D 'cm 

A ~ P A  + C-QC 

which implies B = C = 0. Hence in our language these would be trivial as supergroups 
having anticommuting part zero. 

As with ordinary Lie groups we may require our supergroup matrices to be 'special', 
meaning that the superdeterminant or 'Berezinian' equals 1 where 

sdet( i) = det A(det(D - CA-'B))-' = det(A -BD-'C)(det D)-' (9) 

and sdet(M1M2) = (sdet Ml)(sdet M2). 
The two determinant factors in (9) can be calculated using the same expression 

as for an ordinary determinant because they contain commuting entries only. Further- 
more det D must be an invertible even Grassman algebra element which implies that 
(det D ) o  # 0. 

We observe that the condition sdet M = 1 is preserved under the rescaling intro- 
duced in the proof of theorem 1. Hence a special supergroup G, is homotopically 
equivalent to the ordinary Lie group G x RH where the restricted product xR means 
that we only consider pairs (g ,  h )  with det g = det h.  Topologically G x R H  is SG x 
SH X S' (where SG = {g E Gldet g = 1)) for complex groups and SG x SH x So for real 
groups. (So, the zero sphere, consists of two points, corresponding to the two com- 
ponents det g = det h = 1, det g = det h = - 1.) 

We wish to emphasise, however, that as with ordinary Lie groups the additional 
condition of speciality destroys rather than creates topology. For instance, an ordinary 
complex supergroup is homotopically equivalent to G x H = SG x SH x S' x SI, arid 
speciality annihilates one of the S' factors. 

This result can probably be related to work by Czyz (1981) who considers vector 
bundles with transition functions in GL(R, AV, with V an auxiliary vector bundle and 
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shows that smooth bundles of this type reduce to GL(k, R) or GL(k, @) bundles. (For 
holomorphic bundles, however, this superextension is non-trivial.) 

The question arises whether these supergroups are super Lie groups in the rigorous 
sense of Rogers (1980, 1981). Roughly speaking this means that the supergroup 
locally looks like BP,.' =BO, x . . . x BO, x B!, x . , ,B!, ( p  resp q times) and that the 
transition functions and group operations can be written as power series with 
coefficients in B,. Returning to the first equation defining OSp(l(2;  R) (2) and 
choosing the Grassman algebra BZ, this equation defines a four-dimensional subset 
of the six-dimensional parameter space. However, it is not even clear what type of 
supermanifold this might produce ( ( p ,  q )  = (2, O), (1, 1) or (0, 2)), starting as we do 
from one commuting and two anticommuting variables. It would be interesting to 
investigate this point further. 

In  conclusion we have studied the topology of supergroups, being a class of matrix 
groups with Grassman algebra-valued entries, and have found that they exhibit no 
new homotopic features beyond the homotopy of the underlying ordinary Lie groups. 
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